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The HamiltonianH of an open quantum system is non-Hermitian. Its complex eigenv&liase the poles
of the S matrix and provide both the energies and widths of the states. We illustrate the interplay between
Re(H) and Im(H) by means of the different interference phenomena between two neighboring resonance
states. Level repulsion may occur along the real or imaginary(&éxeslatter is called resonance trappinkn
any case, the eigenvalues of the two states avoid crossing in the complex plane. We then calculate the poles of
the S matrix and the corresponding wave functions for a rectangular microwave resonator with a scatter as a
function of the area of the resonator as well as of the degree of opening to a waveguide. The calculations are
performed by using the method of exterior complex scaling/HBegnd Im() cause changes in the structure
of the wave functions which are permanent, as a rule. The resonance picture obtained from the microwave
resonator shows all the characteristic features known from the study of many-body systems in spite of the
absence of two-body forces. The effects arising from the interplay between resonance trapping and level
repulsion along the real axis are not involved in the statistical thGarydom matrix theory

PACS numbgs): 05.45—-a, 05.60.Gg, 03.65.NK, 85.30.Vw

[. INTRODUCTION changes, and, in other cases, to permanent changes as a func-
tion of driving field strength.

For more than ten years, interference phenomena in open The avoided level crossings are related to exceptional
guantum systems have been studied theoretically in thpoints in the complex plangs]. The coupling induced by
framework of different models. Common to all these studiesavoided level crossings is therefore surely connected with
is the appearance of different time scales as soon as the regbe coupling matrix elements of the discrete states of the
nance states start to overlégee Refs[1-8], and references closed system to the continuum. In the continuum shell
in these papers to older wopksSome of the states align with model, these coupling matrix elements are complé}. In-
the decay channels, and become short lived while the re€rferences appear when more than one channel is open. Itis
maining ones decouple to a great deal from the continuum oferefore possible that interferences of different types may
decay channels and become long lived. The wave functiongventually provide a permanent mixing of the wave func-
show permanent changes: they are mixed strongly in the bay_on_s. of the resonance states. A similar study of microwave
sic wave functions of the corresponding closed system. ~ Cavities does not exist.

In many-body systems the interaction is caused, above all, 't S the aim of the present paper to study the resonance

by two-body forces between the constituents of the syste icture of an open microwave resonator in detail. We S.hOW
The additional interaction connected with avoided level hat its characteristic features are the same as those which are

. . . nown from open many-body quantum systems. This means
crossings is believed, usually, to lead only to an exchangec_)[ at not only two-body forces play a role for interaction

the wave funct|ons bUt. not to permanent changes of the.'émong the resonance states but also the interadétivia the
structure. This conclusion re.sults. from many SPECtroscopig yinuum is important. Neither R&() nor Im(W) can be
studies on closed systems with discrete states. Recent inve$sgected, generally. They are important near avoided cross-
tigations in the framework of a schematical modédl] g5 in the complex plane and their interplay can not be
showed, however that, in the case of collective resonancfeglected when R¥() and Im(W) are of the same order of
states, permanent changes in the wave functions occur due fgagnitude. As a result, permanent changes in the structure of
the interplay between the real and imaginary parts of thehe wave functions appear, as a rule. Basic assumptions of
different coupling matrix elements. the statistical theoryrandom matrix theony are fulfilled

The mixing of the resonance states of a microwave resoenly when the interferences caused by the Hermitian and
nator is not caused by two-body forces. A mixing of the anti-Hermitian parts of the Hamiltonian can be neglected to a
states may occur only as a result of avoided level crossinggiood approximation. This is the case, e.g., for a Gaussian
It is therefore an interesting question whether or not som@rthogonal ensemble coupled weakly to the continuum.
permanent mixing in the wave functions of a microwave In Sec. Il of the present paper, the Hamiltonian of an open
cavity can arise. In Ref9], changes in the structure of wave quantum system and the relation of its eigenvalues to the
functions at avoided crossings in a strongly drivetosed  poles of theS matrix is considered. The formalism can be
square potential well system were studied. The avoide@pplied to a many-body system as well as to a microwave
crossings are shown to lead, in some cases, to temporargsonator. The Hamiltonian is non-Hermitian, and the eigen-
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values provide the energies as well as the widths of thenined by the coupling matrix elemenig. between the two
states. In Sec. Il the avoided crossing of two resonanceubspaces. Further, we identif§' with Ho=QHQ, where
states is traced. The differences between the mixing of théH —E)¥ =0 is the Schrdinger equation in the total func-
states due to the Hermitian and anti-Hermitian partd(Gire  tion spaceP+Q. Then the solution’ =PW¥+ QW in the
the central point of discussion. The Hermitian part causes atotal function space if12]

equilibration of the states in relation to the time scale, which NN

is accompanied by level repulsion along the real dgis- 1 1

ergy). In contrast to this, the anti-Hermitian part leads to an =gt o RZJI E (PR+ 0r)(PR m@gr)?’m
attraction of the levels in energy and to a bifurcation of the R=t

widths (formation of different time scal¢sThese processes N Yre
are characteristic of the interplay among resonances which = &g+ 2 g (2
takes place locally in more complicated systdrhs|. R=1 E—Eg+ I_TR

In Sec. IV, the resonance structure of a rectangular micro- 2

wave resonator coupled to one lead is studied. Inside th
resonator is a circular scatter. Level repulsion in the complex
plane appears. This can be seen sometimes as a level repul- H=Ho+W 3)
sion along the real energy axis. In other cases, a bifurcation
of the widths occurs. The changes in the structure of thés the effective Hamilton operator appearing in Qesub-
wave functions are permanent, as a rule. Collective states adace due to the coupling to the continuudhg are the
formed at strong couplings to the lead. The structure of thei
wave functions has almost nothing in common with the
structure of the wave functions of states at small coupling
;ogether with the collective statesj long-lived trapped .Statef{_ix elements between the discrete sta@% and the con-
ppear. The conductance of the microwave resonator is stud _ 2
ied after coupling it to a second lead. The conductance peak§1uum of scattering stategg , while yg. are those between
are determined by the poles of tBamatrix, which move as the resonance statds; and the continuum. The matrix ele-
a function of the coupling strength between cavity and leadsnents of W consist of the principal value integral and the
The results are discussed in Sec. V, and some conclusiomssiduum[12]:
are drawn in Sec. VI.

ere

Bigenfunctions ofH, and Eg=Ex—i/2T'x its eigenvalues.
They provide the wave functions, energies, and widths, re-
spectively, of the resonance statgg. are the coupling ma-

A . A
* YRcYRc |
X . pRyIRE ,
Il. HAMILTON OPERATOR OF AN OPEN We's 27 ;1 PLdE E—-E' 2 021 YReYRre
QUANTUM SYSTEM (4)
The function space of an open quantum system consists @ferec=1, ... A are the channels which open at the ener-

two parts: the subspace of discrete sta@ss(ibspaceand  giese.. They describe the external mixing of two states via

the subspace of scattering stat€sgubspace The discrete  the continuum of decay channels. As a rule, both parts

states are states of the closed system which are embeddR@(W) and ImW) are nonvanishing.

into the continuum of scattering states. Due to the coupling Note that expression&), (3), and (4) follow by formal

of the discrete states to the continuum, they can decay, a’]‘éwriting the Schidinger equation Kl —E)¥ =0, with the

have a finite lifetime. _ _ ~ only condition thatQ and P=1-Q are defined in such a
Let us define two sets Ofl wave fLC‘|”Ct'°”S by first sOViNg manner that the channel wave functions of Misubspace

the Schrdinger equation i~ Eg)®g=0 for the discrete  are uncoupled12]. Otherwise, the eigenvalues and eigen-

states of the closed system, and second the Hoiger functions of  have no physical meaninERTR,;Rc, and

equation H°—E(M))£E=0 for the scattering states of the ~ are eneray dependent functions. generall
environment. Note that the closed system can be a man)fl—)RThe resongayncep art of tfematrix i’sg[lz] y:
particle quantum system or a system like a microwave reso- P

nator. The only condition is that it can be described quantum N ~ o~

mechanically by the Hermitian Hamilton operatéf'. In the gres—j 3 YRe'YRe (5)
case of the flat microwave resonator, this is possible by using ° R=1 E_Eot '_1:

the analogy to the Helmholtz equation. Then tQeand P RT2'R

operators can be defined by L _

We underline thatyg., Er, I'r, and &y are functions
which are calculated inside the formalism. They contain the
contributions of Im{V) and of RefV). ygr. and®x are com-
plex.

and Q- ££=0 andP-®%=0. In order to perform spectro-

scopic studies, we do not use any statistical assumptfons  |1l. AVOIDED CROSSING OF TWO RESONANCE STATES
details, see Refl12]).

AssumingQ+ P=1, we can determine a third wave func-
tion by solving the scattering problemHf®—E(M)wg= In order to illustrate the mutial influence of two neighbor-
— 3. YrefE With a source term. The source term is deter-ing resonance states, we consider the Hamilton operator

N A
-3 lodag, P-3 [CaeanEl @
R=1 c=1 €

A. Schematical study
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FIG. 1. Eigenvalue picture: motion of the poles of 8eatrix in dependence on increasing (a) andw,, (d). The mixing of the wave
functions® . for differentv;, [(b) and(c)] andw,, [(€) and(f)] which is shown as a function of the energies of the states. Ab,,=0 and
We=0, respectivelyb. ;= &(+,j). The arrows indicate the direction of increasing andw,,, respectively.

H(U)_(fl Uin>=(El Uin)
Uih €2 Vin Ez

which describes two resonance states lying at the endegies
and E,. These two states have widtlhy andI',, respec-
tively, and are coupled by;, (wherev, is rea). The eigen-

values are

€l+ €o

[
O=—g®) _ _p®_
gt * 2 =+ 2

i(F1 0

2lo T,

5 ) ©®)

1 -
té\/(el— €)2+4vs. (7)

WhenT ;~T',, the couplingv;, of the two states leads to a
level repulsion along the real axis.

WhenI'; andI’, are different from one another, the mo-
tion of the eigenvalues as a function of the coupling strength
vin IS more complicated. Numerical results for such a case
are shown in Fig. (). Here the motion of the eigenvalues as
a function of increasing;, is indicated by the arrows near
vin=0. There is first, up to a certain critical valu¢ of the
coupling strength, an attraction of the levels along the imagi-
nary axis, which leads t6")~T) . For further increasing
coupling strength beyond the critical valwg, the levels
repel each other along the real axis in the same manner as in
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the case witH';~1I", discussed above. This is the Landau- ' ' ' ' '
Zener effect generalized to open quantum systems: the two : : :
levels avoid crossing in the complex planevat=v, . : . .

Let us now consider the Hamiltonian with the coupling A -ife P C
iWey (Wey is rea) of the two states via the continuum, : :

€1 iWex El O | Fl - ZWEX

H(W): . = - — . .
iWey € 0 E,) 2\-2wg T, 2 p 1

In this case, the eigenvalues are
oF-:--- . 000 4

Yq

i El+ € 1
e T

o
_2_...§ ...... : ...... _

For E;~E,, the coupling via the continuum due iw,
leads to repulsion along the imaginary axisfurcation of
the widthg, i.e., to resonance trapping. Numerical results for
E,+#E, are given in Fig. {d). They show an avoided cross-

ing of the two levels in an analogous manner as in the case ST i
discussed above far, [Fig. 1(a)]. The attraction of the two

levels forwe,<wg, takes place, however, along the real axis,

andEW~E™ is reached. Fowg>wS, the widths of the oL ; : ; ;

two states bifurcate. : : : :
In both cases, the trajectories for the motion of the eigen- > 1 o 1 2

values in the complex plane as a function of the interaction X

vin [Fig. 1(@] andwy, [Fig. 1(d)], respectively, avoid cross- '

ing in the complex plane. Figuredd and 1d) show the FIG. 2. The resonator. The slide, shown in black, will be opened

avoided crossing of the two resonance states in the complgyom the center to both sides (8%v=0, wherew=0.5 (0) corre-

plane. This occurs at a certain critical value of the couplingsponds to closeffully open). x, andy, are given in arbitrary units

strength. Here and in its neighborhood a redistribution befx].

tween the two states takes place. It is accompanied by the

biorthogonality of the eigenfunctionsb. of H, B  for the general case of a complex interactiof+iwgy.

5(1/2)2i<3>i|3>i>>1 wherei=+,—. The wave functions These conditions define the critical values of the coupling

of the two resonance states become mixed,==b. ;®?,  strength in andwg,, respectivelyat which theSmatrix has

whered? are the eigenfunctions 6¢°, which is the Hamil- & branch poin{13].

ton operator with vanishing nondiagonal matrix elements !tiS also possible that two resonance states cross along the
(vin=0 and we,=0, respectively In Figs. Xb) and c) real or imaginary axis while the crossing is avoided along the
[1(e) and 1f)], the coefficientd.. ; are shown as a function other axis. The conditions for such a case with0 areR

of the coupling strengthy;, (We,) expressed by the corre- <|0 forhcrc_)ssin_g along.th(_e”:eal axis a'ﬁ_tb?] for croissingl
sponding positiorE. of the two statesb. . At vanishing along the imaginary axis. The crossing in the complex plane

: : . Ig avoided, in any case.
nondiagonal matrix elements, the states are pure, and lie & y

energiesE, and E,, respectively. The arrows indicate the From a mathematical point of view, the properties of the
1 2 . : L S
changes of the mixing coefficients, , andb_ ; with in- system at an avoided crossing in the complex plaee, in

: . : . _regions of the critical coupling strengttf, andwS,, respec-
creasing coupling strength. The states remain stroggly |mlxeﬁ‘f/gely) e almost the sapmeg repulgi%ﬁr]] of th?ax eiger;walues
for coupling strengths beyond the critical on€h.. ; : L . )
_.1/2. In the same limiB—1, i.e., the biorthogonality of along one axis and attraction along the other axis. The physi

: o . i cal meaning is, however, very different;, causes equilib-
the_wave functlons_3>1) is important only in the critical rium (in relation to the lifetim¢and level repulsion along the
region of the coupling strength.

As it is well known and can be seen from E@), two real axis, whileiw,, creates different time scalésifurcation

interacting discrete states;(#0) cannot cross. In the com- of the widthg and level attraction along the real axis.

plex plane, however, the conditions for crossing of two reso- When the coupling contains both, and iw,, then it
nance states may be fulfilled. Frofa =&, it follows that depends on the ratio between the two parts whether level

repulsion or attraction along the real axis dominates. As a
1 rule, the crossing of states is avoided in the complex plane,
R=(E;—E,)2— 2 (I';—T»)2+4(v2~w2)=0, and results in a complicated interference picture. The wave
4 functions of the resonance states are mixed permanently in
the set of the eigenfunctions of the Hamiltoniafy of the
I=(E;—E5)(I'1—T'5)+8v;;we=0 (10 corresponding closed system.
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FIG. 3. Eigenvalue picture: motion of the poles of tBenatrix in dependence on increasing leng@ft) (y4= —6.0:0.02=-3.0 and
X,=1.5) and width(right) (x,=1.5:0.02:3.5 and/4=—3.0) of the resonator. The opening of the aperturevis0.15 (top) and w=0
(bottom). The energies are given in units [of] 2.

B. Realistic cases small and large coupling strength. Some mixing of all three

In Ref. [7], the behavior of poles of th€ matrix in an  Wave functions appears in the critical region where the wave

open two-dimensional regular microwave billiard connectedunctions are biorthogonaB(>1).

to a single waveguide is studied. As a function of the cou- Another example is the motion of the poles of thena-

pling strength between the resonator and the waveguide, tH&X by varying the coupling strength between the states of an
position of the corresponding resonance poles, the wavatom by means of a laser. In RdB], the positions and
functions of the resonance states and the Wigner-Smith timeidths of two resonances in the vicinity of an autoionizing
delay function are calculated. The poles are calculated on thgiate coupled to another autoionizing doea discrete staje
basis of the exterior complex scaling method. The energy oby a strong laser field are considered. For different atomic
the incoming wave is chosen so that only the channel correparameters, the trajectories in the complex energy plane are
sponding to the first transversal mode in the lead is open. traced by fixing the field frequenay but varying the inten-

In Ref.[7], the bifurcation of the widthéresonance trap- Sity | of the laser field. The states are coupled directly as well
ping) can be seen very clearly indeed. In particular, the conas via a common continuum and the ratio of these couplings
traintuitive result that the lifetimes of certain resonance stateis defined by the Fano paramet@{16]. Most interesting is
increase with increasing coupling to the continuum can bdhe region of avoided resonance crossing where the motion
traced not only in the motion of the poles of tBematrix in  of each eigenvalue trajectory is influenced strongly by the
the complex plane. It can also be seen in the wave functiongiotion of the other one. This occurs at a certain critical
of the resonance states and, above all, in the measurabliensityl.. When furthermore the frequency is equal to the
time-delay function. In the case of three interfering reso-critical valuew,, then laser induced degenerate states aris-
nance states, the wave function(af mosj one of the long-  ing at the double pole of th® matrix are formed. The strong
lived trapped states may be pure in relation to the boundorrelation between the two states for intensities aroynd
states of the closed resonafaf]. More exactly,b;;=1 at  reflects itself in the strong changes of the shape parameters
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of the resonances in the cross section. It can therefore b [T 77"~ S
traced. A . :
In the limit of vanishing direct coupling @—0), the
widths bifurcate at =1, as in other open quantum systems.
This means that the width of one of the resonance state:
increases with increasirig> | ,, while the width of the other 28
decreases relative to the first one. In the lifrito, the ratio
between the widths of the long- and short-lived states ap- [
proaches zergresonance trappingThis corresponds to the a4} :f
situation shown in Fig. @). In the other limiting case, the
coupling via the continuum vanishéthe Q value is large .
Here the levels repel in their energetic positions when — ,l ..~
=|. This corresponds to Fig.(d). )
In any case, i.e., faall Q values, the two resonance states ' R :
start to repel each other in tr@omplexenergy plane at PO OO SO SRR OOON
=1. The repulsion of the eigenvalues in the complex plane 1
is an expression of the strong mutual influence of one state
on the other one in the critical region arouhgd. In the
transition region Q values of the order of magnitude, the
trajectories show a complicated behavior. Here population
trapping may appear, i.e., the width of one of the resonance
states may vanish at a certain finite intensigy>1,. It ap-
pears, generally, if the process is neither pure level repulsior
on the real axis nor pure resonance trapping, but the ampli-
tudes of both processése., the direct coupling of the two
states and their coupling via the continuuare of compa- B
rable importance, and interfere with one another. 10"
Thus the results obtained in R¢8] for two interacting
atomic levels confirm qualitatively the results of the sche-
matical study represented in Sec. Il A, although not only the
nondiagonal matrix elements {*" but also the widthl";
itself depend on. These results and those for the microwave
cavity discussed above show very clearly that individual
resonance states can mix not only due to the two-body force: = ) ‘ ' v,
between the substituents of the systdmt alsoas a conse-
quence of avoided resonance crossings. Other realistic casesFIG. 4. Energiestop) and widths(bottom as a function ofyq
are the resonance doubldf=2": T=0; and 1 in the forw=0.15 andxr=1.5.. For ten values ofq, the.poles of three
nucleus SBe, and thep— o and the meson doubldt=1; states are marked by diamonds)( stars 8), and _C|rcles C). ltis
0 [14]. E,>Eg>E; andl'g>I'c>TI", atyy= —3.56, whlleEA> Ec>Eg
In Ref. [15], the electric-field-dependent intrinsic life- 2"dFc>Ia>1s atyg=—3.74. The wave functions of these three

times of resonances in biased multiple quantum wells argtates are shown in Fig. 5.

studied. Long-lived resonances typically exhibit an anticross- . _ ) o

ing of their eigenenergies and a crossing of their lifetimes/e€sonator through a slide with an adjustable opertigich
while short-lived resonances feature a crossing of theitS also described by the Dirichlet boundary condifioRor
eigenenergies and an anticrossing of their lifetimes. This i¥V=0.5 the resonator and the waveguide are disconnected,
in full agreement with the conditiorR>0 andR<0 for an ~ While w=0 represents the maximal couplifgpening.
anticrossing and a crossing of the energies, respectively, fol- The cavity has a minimum area33 which is determined
lowing from Eq. (10). The first case is characterized by a Py X;=1.5 andyy= —3 (compare Fig. 2 The area is varied
swapping of positions under varying electric fields at theby varyingx, or yq, while both the position of the lead and
anticrossing, while the levels remain essentially localized irthe scatter inside the cavity remain unchanged.

10°

the second case even at the crossing. We solve the equatior A® =E®. Inside the waveguide,
the wave function has the asymptotic forsp= (e
IV. SPECTROSCOPIC PROPERTIES OF AN OPEN - R(E)e*'ky)u(x). Hereu(x) is the transversal mode in the
MICROWAVE RESONATOR waveguidek is the wave number, an(E) is the reflection
coefficient. The energies and widths of the resonance states
A. Calculations for the open microwave resonator are given by the poles of the coefficieR(E) analytically

The calculations are performed for a rectangular flat resocontinued into the lower complex plane. They are identical
nator coupled to a waveguide. Inside the cavity, a circulaf0 the poles of thes matrix, when the fixed point equations
scatter is placed. We use the Dirichlet boundary conditiorfor the Eg andI'g are solvedsee Sec. )l
® =0 on the borders of the billiard and the waveguide. The To find the poles we use the method of exterior complex
waveguide has a width equal to 1, and is attached to thecaling[17,18. For details, see Ref8].
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FIG. 5. The wave functions of the three stategleft), B (middle), and C (right) shown in Fig. 4 forx,=1.5 andyy=—3.56 (1),
—3.58(2), —3.60(3), —3.62(4), —3.64(5), —3.66(6), —3.68(7), —3.70(8), —3.72(9), and —3.74(10).

B. Resonances as a function of the area of the resonator In Fig. 3, the eigenvalue picture is shown far=0.15

We studied the motion of the poles of tematrix as a  (the aperture is partly closed by the slidend w=0 (the
function of the area of the resonator by changing both it@perture is fully openfor different values of the length and
lengthy and widthx. The changes of the corresponding waveWidth of the resonator. In all cases, oscillations of the widths
functions @ are traced. We studied the energy region be-as a function of/4 or x; in the energy region considered can
tween the two thresholds at?~10 and (27)2~40, where be seen. The amplitudes of the oscillations are larger for
only one channel is open. larger widths. Atw=0.15, all states corresponding to differ-
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FIG. 6. Eigenvalue picture: motion of the poles of thenatrix o
in dependence on increasing length of the resonatgyy=( 15 . . . . . :
—3.75:0.001=3.65). The eigenvalues gt= —3.693 are marked 55 -5.0 45 -4.0 -35

by starsw=0.15. Y

FIG. 7. The sum=gI'g of the widths(top) and the numbeN

ent yq(—3>yy>—6) and lying around 24 have small (yottom of states lying between the two thresholds shown as a
widths. This is caused, obviously, by certain symmetry proptunction of the lengthy, of the cavity.w=0.15.

erties of the wave functions in relation to the chan(sahce
this energy is in the middle between the two thresholdke . .
the resonator, the sum of the widths of all states, lying be-

minimum in the widths vanishes when the wave functions A
are strongly mixed via the continuunwé 0). This shows tween the two thresholds, fluctuates as a function of these

that the coupling to the channel washes out some spectrd@lues. In Fig. qbottom, we show the numbé of states as
Scopic properties of the closed System_ a function Ofyd (f0r W:015) This number increases since
Forw=0.15, the energies and widths of the states lying inthe number of states moving from above into the energy
the energy region around 24 are shown in Fig. 4 as a functiofegion considered is larger than the number of states leaving
of y4. Er(yq) show typical avoided crossings, while the it to become bound. On the averagal'y is constant for a
picture of "'r(yq4) is more complicated. For the three statesfixed value ofw with fluctuations smaller than 10%. This can
denoted by diamonds, stars, and circles, respectively, thiee seen from the example with=0.15 shown in Fig. 7
wave functions are shown in Fig. 5 for ten different neigh-(top). The coupling of the cavity to the lead is therefore
boured values of. characterized by but not by the area of the cavity.
Two states B and C) cross freely in the energy &g
~23. The wave functions of the two stat®sandC are very ¢ Resonances as a function of the coupling strength to the lead
different from one another, and the interaction due toVRe( ) . ) .
between them is obviously small. The wave functions of M Fig. 8, we show the eigenvalue picture obtained by
both states almost do not change in the crossing region. On&"Yingw from 0.4 (almost closed aperturéo O (fully open
in the widths can some repulsion be seen, obviously causedPerture. The width of the resonator is determined Ry
by Im(W). This can be seen from Fig. 6, where the results=1.5, and the length by the two neighboring valygs-
are shown from a calculation with smaller stepyjraround  —3.34(Fig. 8, top andyy= —3.28(Fig. 8, botton. In both
the free crossing. cases, collective states are formed. They are formed in re-
Around Ex=27, stateB avoids crossing in energy with gions where the level density is comparably high. Even at a
the other statéA) at some valug/g (around—3.63. In this  full opening of the aperture, collective states belonging to the
region, the wave functions of both states become stronglgifferent groups do not overlap. Thus they scarcely mix via
mixed; their widths become comparable and cross. The rethe continuum.
pulsion in their energies can be seen. The avoided crossing is In Fig. 9, we show the wave functions of the collective
caused mainly by R&Y). Beyond the critical region, the states from the lower part of Fig. 8. Although the wave func-
wave functions of the two states remain mixed, althoughions of the collective states are very different from one an-
some hint of their exchange can be seen. other at a small opening of the aperture=0.4), they are
These results show that an avoided level crossing in thsimilar at a full opening\W=0) [Figs. 9d) and 9f)], where
complex plane can be seen in the projection onto the energyiey have large amplitudes near the aperture. The state
axis or in the projection onto the width axis. In the first case,shown in the middlg¢Fig. Ae)] is trapped by the state to the
Re(W) dominates, while in the second case the mixing of thdeft [Fig. 9(d)] at a comparably large openirigompare Fig.
states occurs mainly due to 1k¥). 8, botton). The wave functions of the collective statesat
According to the oscillations of the widths and the vary- =0 in the long, and in the broad resonators—4.0y,—
ing number of states as a function of the length or width of—6.0) are also similar to those shown in Fig&d)%and 9f).
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FIG. 9. The wave functions of the three broad states shown in
the lower part of Fig. 8 av=0.4[(a)—(c)] andw=0 [(d)—(f)]. The
state in the middl¢(b) and(e)] becomes trapped by the state to the
left [(a) and (d)].

In Fig. 11, the conductance is integrated over the energy
of each group (1S E=<25 and 25 E=<40), and plotted as a
function of w. The conductance at the higher energy in-
creases quite rapidly in a small region wfwhich corre-
sponds to the critical region around,, (compare Ref[8]).

V. DISCUSSION OF THE RESULTS

As demonstrated in Secs. Il and IV, the wave functions
of a quantum system mix under the influence of both the
Hermitian and anti-Hermitian parts of the Hamiltonian. If the
Hermitian part of the Hamiltonian is dominant, then an
avoided crossing can be seen along the energy (@evl
repulsion. If the anti-Hermitian part of the coupling via the
continuum becomes important, then resonance trapfang
bifurcation of the widthsappears. In general, both types of
mixing appear and may interfere. Note that this interaction

The conductance of the resonator is described by the mdetween different states of a quantum system via the con-
trix elementsS..: [Eq. (5)], wherec is the channel of the tinuum does not require two-body forces between the con-
incoming wave andc’ that of the outgoing wave. In our stituents of the system.
calculations, the second lead is on the lower right corner of The states whose wave functions are shown in Fig. 5 lie in
the cavity, symmetrical to the first lead on the upper leftan energy region around 24, where the coupling to the con-
corner.x,=1.5 andy4= —3. tinuum is small. The mixing of the states is varied by means

In Fig. 10, the conductances at three different couplingof varying the area of the resonator. In the upper part of the
strengths to the leads are shown together with the eigenvaluelated Fig. 4, we see typical avoided level crossings in the
picture. In the eigenvalue picture, one can see the formatioanergiesEg(y4). Here the widths of the two states become
of two short-lived states at large openin@gsnallw) in each  comparable to one another. This implies that\R(s deci-
group. This corresponds to the coupling of the resonator tsive for the process. In this case, the results are similar to
two leads. It can be seen from the wave functions of thehose known very well from studies on closed systems with
states thaboth short-lived states of each group are coupleddiscrete stateésee Sec. Il A.
strongly toboth leads. The conductance is therefore large at However, we also see the opposite case: the crossing of
large opening. the stated andC in Fig. 4 is free along the real axis, while

At low opening (v=0.4), the conductance peaks coincide the widths repel each other. In this case, Rg(s obviously
with the resonance peaks. At larger openimg=0.2 and §,  small[the wave functions of the two states are very different
the conductance is an interference picture created by thieom one anothelFig. 5]. Therefore, Im{V) is decisive,
overlapping resonances. The influence of the short-livednd the levels can, according to Sec. lll A, cross along the
resonances onto the conductance can clearly be seen. real axis.

]
1

FIG. 8. Eigenvalue picture: motion of the poles of tBenatrix

in dependence on increasing openingdecreasing w;
w=0.4:0.01:0) forx,=1.5, y4= — 3.34(top), andyy= — 3.28(bot-
tom).

D. Resonances and conductance of the resonator



PRE 62 SPECTROSCOPIC STUDIES IN OPEN QUANTUM SYSTEMS 459

FIG. 10. Eigenvalue picture: motion of the poles of Benatrix in dependence on increasing openidgcreasingy, top lef) and the
conductance as a function Bffor w= 0.4 (top right), 0.2 (bottom lef), and 0(bottom righ}. The value€Eg—(i/2)'g andEg, respectively,

for w=0.4, 0.2, and 0 are marked by circles, diamonds, and stars.

The variation of the widths of the resonance states as a
function of the coupling strength to the continuum is traced
in Fig. 8. In each group of overlapping states, one collective
state is formed whose structure is determined by the channe
wave function. This can be seen very clearly by comparing
the wave functions of the different collective states, which
are similar to one another but have almost nothing in com-
mon with the original wave functions of these states at small
opening of the aperturé=ig. 9). Here the variation of the
external mixing occurs mainly in the Ind(): the approach-

ing of the states of a group in their positions as well as the§

trapping of all but one state inside each group due to enlarg:
ing Im(W) can be seen very clearly in Fig. 8.

It is interesting to compare Fig. 8 with the results for a
slightly changed geometry of the cavity. In RE8], the disk
is smaller and all states between the two thresholds belong ti
one group. According to this, only one broad state is formed
at full opening of the slide.

The avoided crossing of the two broad states in the lower % 005 0.1 015 02 025 03 035 04

part of Fig. 8 occurs according to the schematical picture
with iwg, [Fig. 1(d), level attraction and width bifurcatign

4

3

2

1k

FIG. 11. Integrated conductance as a functiowaf the energy

with the only difference being that not only the nondiagonalregion 25<E=<40 (full line) and 15<E=<25 (dashed ling
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matrix elements of{ depend on the coupling strength deter- furcation of the widthgresonance trappingin other cases,
mined byw,,, but also the diagonal ones. This case wagt may lead to a repulsion of the states along the real energy
studied in detail analytically and numerically in Rgf1]in ~ axis. The interactionW introduces, as a rule, permanent
the framework of a schematical model. changes in the wave functions of the resonance states. Under

In Ref. [9], avoided level crossings in a closed resonatorcertain conditions, the system may be stabilized dynamically
under the influence of a driving field were studied. The re{3].
sults show avoided level crossings with and without a per- The resonance picture of a microwave resonator shows all
manent mixing of the wave functions, in a similar manner aghe characteristic features which are known from open quan-
in the open resonator studied by us. tum systems with two-body forces between the constituents.

The relation between the peaks in the conductance, th&his result means that the interaction between the resonance
Wigner delay times, and the positions of the states in thgtates at the avoided level crossings in the complex plane
closed resonator was studied in Rf9]. The results of the plays an important role for a mixing of the wave functions.
present paper show that the conductance peaks are relatedA8 an example, the wave functions of the collective short-
the positions of the resonance states in dpenresonator. lived states are strongly mixed in the set of wave functions of
The peaks are, generally, the result of interferences betwedhe closed system. They are quite different from those of the
the resonance states. original states at small coupling to the continuum.

Altogether, the interplay between R&J and Im(W) The statistical theoryrandom matrix theony describes
leads, as a rule, to permanent mixings of the wave functiongesonance states of an almost closed system. The poles of the
Level repulsion along the real axis is caused by \Wg( S matrix are near to the real axis, and M) is small. The
while a bifurcation of the widthgresonance trappingis  effective Hamilton operator isH=H,+Re(W)+Im(W)
caused by Im{V). Both processes may interfere with one =Re(H)—iVV', where V’s are the coupling vectors be-
another. As a result, different time scales may appear and tH#een discrete and scattering stgte8]. The level repulsion
energy dependency of the conductance changes with the dalong the real energy axis is embodied in R¢(by choos-

gree of opening of the system in a non-trivial manner. ing, e.g., the Gaussian orthogonal ensemble. Under these
conditions, the effects caused by the interplay between
VI. CONCLUSIONS Re(H) and Im(/) can be neglected to a good approxima-

tion. The results obtained in the present paper show, how-
The interaction\W of resonance states via the continuumever, that the situation is different when the system is really
of decay channels consists of the Hermitian partVRe@nd  open, i.e., when In#{) and Re{) are of thesameorder of
the anti-Hermitian part Im{/). Both terms have to be con- magnitude. In this case, the interplay between the two parts
sidered not only in a many-body syst¢d0] but also in the  of H causesion-negligibleeffects which are not considered
microwave billiard, as shown in the present paper. Someén the statistical theory. The avoided crossing of resonance
results show the dominance of I, and others the domi- states in the complex plane embodies the interplay between

nance of Re(V). The avoided crossing of the resonanceresonance trapping and level repulsion along the real axis.
states in the complex plane may appear, under certain con-

ditions, as a free crossing along the real axis or along the
imaginary axis.

The interplay between the Hermitian and anti-Hermitian Valuable discussions with J. Burgder, M. Muller, J.
parts of the coupling operator between two resonance staté$ockel, K. Richter, and M. Sieber are gratefully acknowl-
via a common continuum may lead, in some cases, to a biedged.
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