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Spectroscopic studies in open quantum systems
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The HamiltonianH of an open quantum system is non-Hermitian. Its complex eigenvaluesER are the poles
of the S matrix and provide both the energies and widths of the states. We illustrate the interplay between
Re(H) and Im(H) by means of the different interference phenomena between two neighboring resonance
states. Level repulsion may occur along the real or imaginary axis~the latter is called resonance trapping!. In
any case, the eigenvalues of the two states avoid crossing in the complex plane. We then calculate the poles of
the S matrix and the corresponding wave functions for a rectangular microwave resonator with a scatter as a
function of the area of the resonator as well as of the degree of opening to a waveguide. The calculations are
performed by using the method of exterior complex scaling. Re(H) and Im(H) cause changes in the structure
of the wave functions which are permanent, as a rule. The resonance picture obtained from the microwave
resonator shows all the characteristic features known from the study of many-body systems in spite of the
absence of two-body forces. The effects arising from the interplay between resonance trapping and level
repulsion along the real axis are not involved in the statistical theory~random matrix theory!.

PACS number~s!: 05.45.2a, 05.60.Gg, 03.65.Nk, 85.30.Vw
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I. INTRODUCTION

For more than ten years, interference phenomena in o
quantum systems have been studied theoretically in
framework of different models. Common to all these stud
is the appearance of different time scales as soon as the
nance states start to overlap~see Refs.@1–8#, and references
in these papers to older works!. Some of the states align wit
the decay channels, and become short lived while the
maining ones decouple to a great deal from the continuum
decay channels and become long lived. The wave funct
show permanent changes: they are mixed strongly in the
sic wave functions of the corresponding closed system.

In many-body systems the interaction is caused, above
by two-body forces between the constituents of the syst
The additional interaction connected with avoided le
crossings is believed, usually, to lead only to an exchang
the wave functions but not to permanent changes of t
structure. This conclusion results from many spectrosco
studies on closed systems with discrete states. Recent in
tigations in the framework of a schematical model@1#
showed, however that, in the case of collective resona
states, permanent changes in the wave functions occur d
the interplay between the real and imaginary parts of
different coupling matrix elements.

The mixing of the resonance states of a microwave re
nator is not caused by two-body forces. A mixing of t
states may occur only as a result of avoided level crossi
It is therefore an interesting question whether or not so
permanent mixing in the wave functions of a microwa
cavity can arise. In Ref.@9#, changes in the structure of wav
functions at avoided crossings in a strongly driven~closed!
square potential well system were studied. The avoi
crossings are shown to lead, in some cases, to tempo
PRE 621063-651X/2000/62~1!/450~12!/$15.00
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changes, and, in other cases, to permanent changes as a
tion of driving field strength.

The avoided level crossings are related to exceptio
points in the complex plane@6#. The coupling induced by
avoided level crossings is therefore surely connected w
the coupling matrix elements of the discrete states of
closed system to the continuum. In the continuum sh
model, these coupling matrix elements are complex@10#. In-
terferences appear when more than one channel is open
therefore possible that interferences of different types m
eventually provide a permanent mixing of the wave fun
tions of the resonance states. A similar study of microwa
cavities does not exist.

It is the aim of the present paper to study the resona
picture of an open microwave resonator in detail. We sh
that its characteristic features are the same as those whic
known from open many-body quantum systems. This me
that not only two-body forces play a role for interactio
among the resonance states but also the interactionW via the
continuum is important. Neither Re(W) nor Im(W) can be
neglected, generally. They are important near avoided cr
ings in the complex plane and their interplay can not
neglected when Re(W) and Im(W) are of the same order o
magnitude. As a result, permanent changes in the structu
the wave functions appear, as a rule. Basic assumption
the statistical theory~random matrix theory! are fulfilled
only when the interferences caused by the Hermitian
anti-Hermitian parts of the Hamiltonian can be neglected t
good approximation. This is the case, e.g., for a Gauss
orthogonal ensemble coupled weakly to the continuum.

In Sec. II of the present paper, the Hamiltonian of an op
quantum system and the relation of its eigenvalues to
poles of theS matrix is considered. The formalism can b
applied to a many-body system as well as to a microw
resonator. The Hamiltonian is non-Hermitian, and the eig
450 ©2000 The American Physical Society
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PRE 62 451SPECTROSCOPIC STUDIES IN OPEN QUANTUM SYSTEMS
values provide the energies as well as the widths of
states. In Sec. III the avoided crossing of two resona
states is traced. The differences between the mixing of
states due to the Hermitian and anti-Hermitian parts ofH are
the central point of discussion. The Hermitian part causes
equilibration of the states in relation to the time scale, wh
is accompanied by level repulsion along the real axis~en-
ergy!. In contrast to this, the anti-Hermitian part leads to
attraction of the levels in energy and to a bifurcation of t
widths ~formation of different time scales!. These processe
are characteristic of the interplay among resonances w
takes place locally in more complicated systems@11#.

In Sec. IV, the resonance structure of a rectangular mic
wave resonator coupled to one lead is studied. Inside
resonator is a circular scatter. Level repulsion in the comp
plane appears. This can be seen sometimes as a level r
sion along the real energy axis. In other cases, a bifurca
of the widths occurs. The changes in the structure of
wave functions are permanent, as a rule. Collective states
formed at strong couplings to the lead. The structure of th
wave functions has almost nothing in common with t
structure of the wave functions of states at small coupli
Together with the collective states, long-lived trapped sta
appear. The conductance of the microwave resonator is s
ied after coupling it to a second lead. The conductance pe
are determined by the poles of theS matrix, which move as
a function of the coupling strength between cavity and lea
The results are discussed in Sec. V, and some conclus
are drawn in Sec. VI.

II. HAMILTON OPERATOR OF AN OPEN
QUANTUM SYSTEM

The function space of an open quantum system consis
two parts: the subspace of discrete states (Q subspace! and
the subspace of scattering states (P subspace!. The discrete
states are states of the closed system which are embe
into the continuum of scattering states. Due to the coup
of the discrete states to the continuum, they can decay,
have a finite lifetime.

Let us define two sets of wave functions by first solvi
the Schro¨dinger equation (Hcl2ER

cl)FR
cl50 for the discrete

states of the closed system, and second the Schro¨dinger
equation (Hcc2E(1))jE

c 50 for the scattering states of th
environment. Note that the closed system can be a ma
particle quantum system or a system like a microwave re
nator. The only condition is that it can be described quant
mechanically by the Hermitian Hamilton operatorHcl. In the
case of the flat microwave resonator, this is possible by us
the analogy to the Helmholtz equation. Then theQ and P
operators can be defined by

Q5 (
R51

N

uFR
cl&^FR

clu, P5 (
c51

L E
ec

`

dEujE
c &^jE

c u ~1!

and Q•jE
c 50 and P•FR

cl50. In order to perform spectro
scopic studies, we do not use any statistical assumptions~for
details, see Ref.@12#!.

AssumingQ1P51, we can determine a third wave fun
tion by solving the scattering problem (Hcc2E(1))vR5
2(cgRcjE

c with a source term. The source term is det
e
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mined by the coupling matrix elementsgRc between the two
subspaces. Further, we identifyHcl with H0[QHQ, where
(H2E)C50 is the Schro¨dinger equation in the total func
tion spaceP1Q. Then the solutionC5PC1QC in the
total function space is@12#

C5jE
c 1

1

2p (
R51

N

(
R851

N

~FR
cl1vR!^FR

clu
1

E2H uFR8
cl &gR8c

5jE
c 1 (

R51

N

F̃R

g̃Rc

E2ẼR1
i

2
G̃R

. ~2!

Here

H5H01W ~3!

is the effective Hamilton operator appearing in theQ sub-
space due to the coupling to the continuum,F̃R are the
eigenfunctions ofH, and ẼR[ẼR2 i /2G̃R its eigenvalues.
They provide the wave functions, energies, and widths,
spectively, of the resonance states.gRc are the coupling ma-
trix elements between the discrete statesFR

cl and the con-

tinuum of scattering statesjE
c , while g̃Rc are those between

the resonance statesF̃R and the continuum. The matrix ele
ments ofW consist of the principal value integral and th
residuum@12#:

WR8R
ex

5
1

2p (
c51

L

PE
ec

`

dE8
gRcgR8c

E2E8
2

i

2 (
c51

L

gRcgR8c .

~4!

Herec51, . . . ,L are the channels which open at the en
giesec . They describe the external mixing of two states v
the continuum of decay channels. As a rule, both pa
Re(W) and Im(W) are nonvanishing.

Note that expressions~2!, ~3!, and ~4! follow by formal
rewriting the Schro¨dinger equation (H2E)C50, with the
only condition thatQ and P512Q are defined in such a
manner that the channel wave functions of theP subspace
are uncoupled@12#. Otherwise, the eigenvalues and eige
functions ofH have no physical meaning.ẼR ,G̃R ,g̃Rc , and
F̃R are energy dependent functions, generally.

The resonance part of theS matrix is @12#

Scc8
(res)

5 i (
R51

N
g̃Rc8g̃Rc

E2ẼR1
i

2
G̃R

. ~5!

We underline thatg̃Rc , ẼR , G̃R , and F̃R are functions
which are calculated inside the formalism. They contain
contributions of Im(W) and of Re(W). g̃Rc andF̃R are com-
plex.

III. AVOIDED CROSSING OF TWO RESONANCE STATES

A. Schematical study

In order to illustrate the mutial influence of two neighbo
ing resonance states, we consider the Hamilton operator
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FIG. 1. Eigenvalue picture: motion of the poles of theSmatrix in dependence on increasingv in ~a! andwex ~d!. The mixing of the wave

functionsF̃6 for differentv in @~b! and~c!# andwex @~e! and~f!# which is shown as a function of the energiesE6 of the states. Atv in50 and
wex50, respectively,b6, j5d(6, j ). The arrows indicate the direction of increasingv in andwex, respectively.
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H (v)5S e1 v in

v in e2
D[S E1 v in

v in E2
D 2

i

2 S G1 0

0 G2
D ~6!

which describes two resonance states lying at the energieE1
and E2. These two states have widthsG1 and G2, respec-
tively, and are coupled byv in ~wherev in is real!. The eigen-
values are

E 6
(v)[E6

(v)2
i

2
G6

(v)5
e11e2

2
6

1

2
A~e12e2!214v in

2 . ~7!
WhenG1'G2, the couplingv in of the two states leads to
level repulsion along the real axis.

WhenG1 andG2 are different from one another, the mo
tion of the eigenvalues as a function of the coupling stren
v in is more complicated. Numerical results for such a ca
are shown in Fig. 1~a!. Here the motion of the eigenvalues a
a function of increasingv in is indicated by the arrows nea
v in50. There is first, up to a certain critical valuev in

cr of the
coupling strength, an attraction of the levels along the ima
nary axis, which leads toG1

(v)'G2
(v) . For further increasing

coupling strength beyond the critical valuev in
cr , the levels

repel each other along the real axis in the same manner
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PRE 62 453SPECTROSCOPIC STUDIES IN OPEN QUANTUM SYSTEMS
the case withG1'G2 discussed above. This is the Landa
Zener effect generalized to open quantum systems: the
levels avoid crossing in the complex plane atv in5v in

cr .
Let us now consider the Hamiltonian with the couplin

iwex (wex is real! of the two states via the continuum,

H (w)5S e1 iwex

iwex e2
D[S E1 0

0 E2
D 2

i

2 S G1 22wex

22wex G2
D .

~8!

In this case, the eigenvalues are

E 6
(w)[E6

(w)2
i

2
G6

(w)5
e11e2

2
6

1

2
A~e12e2!224wex

2 .

~9!

For E1'E2, the coupling via the continuum due toiwex
leads to repulsion along the imaginary axis~bifurcation of
the widths!, i.e., to resonance trapping. Numerical results
E1'” E2 are given in Fig. 1~d!. They show an avoided cross
ing of the two levels in an analogous manner as in the c
discussed above forv in @Fig. 1~a!#. The attraction of the two
levels forwex,wex

cr takes place, however, along the real ax
andE1

(w)'E2
(w) is reached. Forwex.wex

cr , the widths of the
two states bifurcate.

In both cases, the trajectories for the motion of the eig
values in the complex plane as a function of the interact
v in @Fig. 1~a!# andwex @Fig. 1~d!#, respectively, avoid cross
ing in the complex plane. Figures 1~a! and 1~d! show the
avoided crossing of the two resonance states in the com
plane. This occurs at a certain critical value of the coupl
strength. Here and in its neighborhood a redistribution
tween the two states takes place. It is accompanied by
biorthogonality of the eigenfunctionsF̃6 of H, B

[(1/2)( i^F̃ i uF̃ i&.1 where i 51,2. The wave functions
of the two resonance states become mixed,F̃65(b6, jF j

0 ,
whereF j

0 are the eigenfunctions ofH 0, which is the Hamil-
ton operator with vanishing nondiagonal matrix eleme
(v in50 and wex50, respectively!. In Figs. 1~b! and 1~c!
@1~e! and 1~f!#, the coefficientsb6, j are shown as a function
of the coupling strengthv in (wex) expressed by the corre
sponding positionE6 of the two statesF̃6 . At vanishing
nondiagonal matrix elements, the states are pure, and l
energiesE1 and E2, respectively. The arrows indicate th
changes of the mixing coefficientsb1, j and b2, j with in-
creasing coupling strength. The states remain strongly m
for coupling strengths beyond the critical one,ub6, j u
→1/A2. In the same limitB→1, i.e., the biorthogonality of
the wave functions (B.1) is important only in the critical
region of the coupling strength.

As it is well known and can be seen from Eq.~7!, two
interacting discrete states (v inÞ0) cannot cross. In the com
plex plane, however, the conditions for crossing of two re
nance states may be fulfilled. FromE15E2 , it follows that

R[~E12E2!22
1

4
~G12G2!214~v in

2 2wex
2 !50,

I[~E12E2!~G12G2!18v inwex50 ~10!
-
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for the general case of a complex interactionv in1 iwex.
These conditions define the critical values of the coupl
strength (v in

cr andwex
cr , respectively! at which theSmatrix has

a branch point@13#.
It is also possible that two resonance states cross along

real or imaginary axis while the crossing is avoided along
other axis. The conditions for such a case withI 50 areR
,0 for crossing along the real axis andR.0 for crossing
along the imaginary axis. The crossing in the complex pla
is avoided, in any case.

From a mathematical point of view, the properties of t
system at an avoided crossing in the complex plane~i.e., in
regions of the critical coupling strengthv in

cr andwex
cr , respec-

tively! are almost the same: repulsion of the eigenval
along one axis and attraction along the other axis. The ph
cal meaning is, however, very different:v in causes equilib-
rium ~in relation to the lifetime! and level repulsion along the
real axis, whileiwex creates different time scales~bifurcation
of the widths! and level attraction along the real axis.

When the coupling contains bothv in and iwex, then it
depends on the ratio between the two parts whether le
repulsion or attraction along the real axis dominates. A
rule, the crossing of states is avoided in the complex pla
and results in a complicated interference picture. The w
functions of the resonance states are mixed permanent
the set of the eigenfunctions of the HamiltonianH0 of the
corresponding closed system.

FIG. 2. The resonator. The slide, shown in black, will be open
from the center to both sides (0.5>w>0, wherew50.5 ~0! corre-
sponds to closed~fully open!!. xr andyd are given in arbitrary units
@x#.
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FIG. 3. Eigenvalue picture: motion of the poles of theS matrix in dependence on increasing length~left! (yd526.0:0.02:23.0 and
xr51.5) and width~right! (xr51.5:0.02:3.5 andyd523.0) of the resonator. The opening of the aperture isw50.15 ~top! and w50
~bottom!. The energies are given in units of@x#22.
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B. Realistic cases

In Ref. @7#, the behavior of poles of theS matrix in an
open two-dimensional regular microwave billiard connec
to a single waveguide is studied. As a function of the co
pling strength between the resonator and the waveguide
position of the corresponding resonance poles, the w
functions of the resonance states and the Wigner-Smith
delay function are calculated. The poles are calculated on
basis of the exterior complex scaling method. The energ
the incoming wave is chosen so that only the channel co
sponding to the first transversal mode in the lead is open

In Ref. @7#, the bifurcation of the widths~resonance trap
ping! can be seen very clearly indeed. In particular, the c
traintuitive result that the lifetimes of certain resonance sta
increase with increasing coupling to the continuum can
traced not only in the motion of the poles of theS matrix in
the complex plane. It can also be seen in the wave funct
of the resonance states and, above all, in the measu
time-delay function. In the case of three interfering res
nance states, the wave function of~at most! one of the long-
lived trapped states may be pure in relation to the bo
states of the closed resonator@7#. More exactly,bii 51 at
d
-
he
ve
e

he
of
e-

-
s
e

ns
ble
-

d

small and large coupling strength. Some mixing of all thr
wave functions appears in the critical region where the w
functions are biorthogonal (B.1).

Another example is the motion of the poles of theS ma-
trix by varying the coupling strength between the states of
atom by means of a laser. In Ref.@3#, the positions and
widths of two resonances in the vicinity of an autoionizin
state coupled to another autoionizing one~or a discrete state!
by a strong laser field are considered. For different atom
parameters, the trajectories in the complex energy plane
traced by fixing the field frequencyv but varying the inten-
sity I of the laser field. The states are coupled directly as w
as via a common continuum and the ratio of these coupli
is defined by the Fano parameterQ @16#. Most interesting is
the region of avoided resonance crossing where the mo
of each eigenvalue trajectory is influenced strongly by
motion of the other one. This occurs at a certain critic
intensityI cr . When furthermore the frequency is equal to t
critical valuevcr , then laser induced degenerate states a
ing at the double pole of theSmatrix are formed. The strong
correlation between the two states for intensities aroundI cr
reflects itself in the strong changes of the shape parame
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PRE 62 455SPECTROSCOPIC STUDIES IN OPEN QUANTUM SYSTEMS
of the resonances in the cross section. It can therefore
traced.

In the limit of vanishing direct coupling (Q→0), the
widths bifurcate atI 5I cr as in other open quantum system
This means that the width of one of the resonance st
increases with increasingI .I cr , while the width of the other
decreases relative to the first one. In the limitI→`, the ratio
between the widths of the long- and short-lived states
proaches zero~resonance trapping!. This corresponds to the
situation shown in Fig. 1~d!. In the other limiting case, the
coupling via the continuum vanishes~the Q value is large!.
Here the levels repel in their energetic positions whenI
>I cr . This corresponds to Fig. 1~a!.

In any case, i.e., forall Q values, the two resonance stat
start to repel each other in thecomplexenergy plane atI
5I cr . The repulsion of the eigenvalues in the complex pla
is an expression of the strong mutual influence of one s
on the other one in the critical region aroundI cr . In the
transition region (Q values of the order of magnitude 1!, the
trajectories show a complicated behavior. Here popula
trapping may appear, i.e., the width of one of the resona
states may vanish at a certain finite intensityI pt.I cr . It ap-
pears, generally, if the process is neither pure level repul
on the real axis nor pure resonance trapping, but the am
tudes of both processes~i.e., the direct coupling of the two
states and their coupling via the continuum! are of compa-
rable importance, and interfere with one another.

Thus the results obtained in Ref.@3# for two interacting
atomic levels confirm qualitatively the results of the sch
matical study represented in Sec. III A, although not only
nondiagonal matrix elements ofHeff but also the widthG1
itself depend onI. These results and those for the microwa
cavity discussed above show very clearly that individ
resonance states can mix not only due to the two-body fo
between the substituents of the system,but alsoas a conse-
quence of avoided resonance crossings. Other realistic c
are the resonance doubletJp521; T50; and 1 in the
nucleus 8Be, and ther2v and the meson doubletT51;
0 @14#.

In Ref. @15#, the electric-field-dependent intrinsic life
times of resonances in biased multiple quantum wells
studied. Long-lived resonances typically exhibit an anticro
ing of their eigenenergies and a crossing of their lifetim
while short-lived resonances feature a crossing of th
eigenenergies and an anticrossing of their lifetimes. Thi
in full agreement with the conditionsR.0 andR,0 for an
anticrossing and a crossing of the energies, respectively,
lowing from Eq. ~10!. The first case is characterized by
swapping of positions under varying electric fields at t
anticrossing, while the levels remain essentially localized
the second case even at the crossing.

IV. SPECTROSCOPIC PROPERTIES OF AN OPEN
MICROWAVE RESONATOR

A. Calculations for the open microwave resonator

The calculations are performed for a rectangular flat re
nator coupled to a waveguide. Inside the cavity, a circu
scatter is placed. We use the Dirichlet boundary condit
F50 on the borders of the billiard and the waveguide. T
waveguide has a width equal to 1, and is attached to
be
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resonator through a slide with an adjustable opening~which
is also described by the Dirichlet boundary condition!. For
w50.5 the resonator and the waveguide are disconnec
while w50 represents the maximal coupling~opening!.

The cavity has a minimum area 333 which is determined
by xr51.5 andyd523 ~compare Fig. 2!. The area is varied
by varyingxr or yd , while both the position of the lead an
the scatter inside the cavity remain unchanged.

We solve the equation2DF5EF. Inside the waveguide
the wave function has the asymptotic formF5„eiky

2R(E)e2 iky
…u(x). Hereu(x) is the transversal mode in th

waveguide,k is the wave number, andR(E) is the reflection
coefficient. The energies and widths of the resonance st
are given by the poles of the coefficientR(E) analytically
continued into the lower complex plane. They are identi
to the poles of theS matrix, when the fixed point equation
for the ẼR and G̃R are solved~see Sec. II!.

To find the poles we use the method of exterior comp
scaling@17,18#. For details, see Ref.@8#.

FIG. 4. Energies~top! and widths~bottom! as a function ofyd

for w50.15 andxr51.5. For ten values ofyd , the poles of three
states are marked by diamonds (A), stars (B), and circles (C). It is
EA.EB.EC andGB.GC.GA at yd523.56, whileEA.EC.EB

andGC.GA.GB at yd523.74. The wave functions of these thre
states are shown in Fig. 5.
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FIG. 5. The wave functions of the three statesA ~left!, B ~middle!, and C ~right! shown in Fig. 4 forxr51.5 andyd523.56 ~1!,
23.58 ~2!, 23.60 ~3!, 23.62 ~4!, 23.64 ~5!, 23.66 ~6!, 23.68 ~7!, 23.70 ~8!, 23.72 ~9!, and23.74 ~10!.
it
ve
e

d
ths
n
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r-
B. Resonances as a function of the area of the resonator

We studied the motion of the poles of theS matrix as a
function of the area of the resonator by changing both
lengthy and widthx. The changes of the corresponding wa
functionsFR are traced. We studied the energy region b
tween the two thresholds atp2'10 and (2p)2'40, where
only one channel is open.
s

-

In Fig. 3, the eigenvalue picture is shown forw50.15
~the aperture is partly closed by the slide! and w50 ~the
aperture is fully open! for different values of the length an
width of the resonator. In all cases, oscillations of the wid
as a function ofyd or xr in the energy region considered ca
be seen. The amplitudes of the oscillations are larger
larger widths. Atw50.15, all states corresponding to diffe



ll
op

n

ctr

i
tio
e
es
t
h

o
n
s
lt

g
r

ng

g

th
er
se
th

y-
o

be-
ese

e
rgy
ving

n

re

by

re-
t a

the
via

e
c-
n-

tate
e

s a

PRE 62 457SPECTROSCOPIC STUDIES IN OPEN QUANTUM SYSTEMS
ent yd (23.yd.26) and lying around 24 have sma
widths. This is caused, obviously, by certain symmetry pr
erties of the wave functions in relation to the channel~since
this energy is in the middle between the two thresholds!. The
minimum in the widths vanishes when the wave functio
are strongly mixed via the continuum (w50). This shows
that the coupling to the channel washes out some spe
scopic properties of the closed system.

For w50.15, the energies and widths of the states lying
the energy region around 24 are shown in Fig. 4 as a func
of yd . ER(yd) show typical avoided crossings, while th
picture of GR(yd) is more complicated. For the three stat
denoted by diamonds, stars, and circles, respectively,
wave functions are shown in Fig. 5 for ten different neig
boured values ofyd .

Two states (B and C! cross freely in the energy atER
'23. The wave functions of the two statesB andC are very
different from one another, and the interaction due to Re(W)
between them is obviously small. The wave functions
both states almost do not change in the crossing region. O
in the widths can some repulsion be seen, obviously cau
by Im(W). This can be seen from Fig. 6, where the resu
are shown from a calculation with smaller steps inyd around
the free crossing.

Around ER527, stateB avoids crossing in energy with
the other state~A! at some valueyd

cr ~around23.63!. In this
region, the wave functions of both states become stron
mixed; their widths become comparable and cross. The
pulsion in their energies can be seen. The avoided crossi
caused mainly by Re(W). Beyond the critical region, the
wave functions of the two states remain mixed, althou
some hint of their exchange can be seen.

These results show that an avoided level crossing in
complex plane can be seen in the projection onto the en
axis or in the projection onto the width axis. In the first ca
Re(W) dominates, while in the second case the mixing of
states occurs mainly due to Im(W).

According to the oscillations of the widths and the var
ing number of states as a function of the length or width

FIG. 6. Eigenvalue picture: motion of the poles of theS matrix
in dependence on increasing length of the resonator (yd5
23.75:0.001:23.65). The eigenvalues atyd523.693 are marked
by stars.w50.15.
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the resonator, the sum of the widths of all states, lying
tween the two thresholds, fluctuates as a function of th
values. In Fig. 7~bottom!, we show the numberN of states as
a function ofyd ~for w50.15). This number increases sinc
the number of states moving from above into the ene
region considered is larger than the number of states lea
it to become bound. On the average,(RGR is constant for a
fixed value ofw with fluctuations smaller than 10%. This ca
be seen from the example withw50.15 shown in Fig. 7
~top!. The coupling of the cavity to the lead is therefo
characterized byw but not by the area of the cavity.

C. Resonances as a function of the coupling strength to the lead

In Fig. 8, we show the eigenvalue picture obtained
varyingw from 0.4 ~almost closed aperture! to 0 ~fully open
aperture!. The width of the resonator is determined byxr

51.5, and the length by the two neighboring valuesyd5
23.34 ~Fig. 8, top! andyd523.28 ~Fig. 8, bottom!. In both
cases, collective states are formed. They are formed in
gions where the level density is comparably high. Even a
full opening of the aperture, collective states belonging to
different groups do not overlap. Thus they scarcely mix
the continuum.

In Fig. 9, we show the wave functions of the collectiv
states from the lower part of Fig. 8. Although the wave fun
tions of the collective states are very different from one a
other at a small opening of the aperture (w50.4), they are
similar at a full opening (w50) @Figs. 9~d! and 9~f!#, where
they have large amplitudes near the aperture. The s
shown in the middle@Fig. 9~e!# is trapped by the state to th
left @Fig. 9~d!# at a comparably large opening~compare Fig.
8, bottom!. The wave functions of the collective states atw
50 in the long, and in the broad resonators (xr→4.0,yd→
26.0) are also similar to those shown in Figs. 9~d! and 9~f!.

FIG. 7. The sum(RGR of the widths~top! and the numberN
~bottom! of states lying between the two thresholds shown a
function of the lengthyd of the cavity.w50.15.
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D. Resonances and conductance of the resonator

The conductance of the resonator is described by the
trix elementsScc8 @Eq. ~5!#, wherec is the channel of the
incoming wave andc8 that of the outgoing wave. In ou
calculations, the second lead is on the lower right corne
the cavity, symmetrical to the first lead on the upper l
corner.xr51.5 andyd523.

In Fig. 10, the conductances at three different coupl
strengths to the leads are shown together with the eigenv
picture. In the eigenvalue picture, one can see the forma
of two short-lived states at large openings~small w) in each
group. This corresponds to the coupling of the resonato
two leads. It can be seen from the wave functions of
states thatboth short-lived states of each group are coup
strongly toboth leads. The conductance is therefore large
large opening.

At low opening (w50.4), the conductance peaks coinci
with the resonance peaks. At larger opening (w50.2 and 0!,
the conductance is an interference picture created by
overlapping resonances. The influence of the short-li
resonances onto the conductance can clearly be seen.

FIG. 8. Eigenvalue picture: motion of the poles of theS matrix
in dependence on increasing opening~decreasing w;
w50.4:0.01:0) forxr51.5, yd523.34~top!, andyd523.28~bot-
tom!.
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In Fig. 11, the conductance is integrated over the ene
of each group (15<E<25 and 25<E<40), and plotted as a
function of w. The conductance at the higher energy
creases quite rapidly in a small region ofw which corre-
sponds to the critical region aroundwcr ~compare Ref.@8#!.

V. DISCUSSION OF THE RESULTS

As demonstrated in Secs. III and IV, the wave functio
of a quantum system mix under the influence of both
Hermitian and anti-Hermitian parts of the Hamiltonian. If th
Hermitian part of the Hamiltonian is dominant, then a
avoided crossing can be seen along the energy axis~level
repulsion!. If the anti-Hermitian part of the coupling via th
continuum becomes important, then resonance trapping~a
bifurcation of the widths! appears. In general, both types
mixing appear and may interfere. Note that this interact
between different states of a quantum system via the c
tinuum does not require two-body forces between the c
stituents of the system.

The states whose wave functions are shown in Fig. 5 lie
an energy region around 24, where the coupling to the c
tinuum is small. The mixing of the states is varied by mea
of varying the area of the resonator. In the upper part of
related Fig. 4, we see typical avoided level crossings in
energiesER(yd). Here the widths of the two states becom
comparable to one another. This implies that Re(W) is deci-
sive for the process. In this case, the results are simila
those known very well from studies on closed systems w
discrete states~see Sec. III A!.

However, we also see the opposite case: the crossin
the statesB andC in Fig. 4 is free along the real axis, whil
the widths repel each other. In this case, Re(W) is obviously
small @the wave functions of the two states are very differe
from one another~Fig. 5!#. Therefore, Im(W) is decisive,
and the levels can, according to Sec. III A, cross along
real axis.

FIG. 9. The wave functions of the three broad states shown
the lower part of Fig. 8 atw50.4 @~a!–~c!# andw50 @~d!–~f!#. The
state in the middle@~b! and~e!# becomes trapped by the state to t
left @~a! and ~d!#.
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FIG. 10. Eigenvalue picture: motion of the poles of theS matrix in dependence on increasing opening~decreasingw, top left! and the
conductance as a function ofE for w50.4 ~top right!, 0.2 ~bottom left!, and 0~bottom right!. The valuesER2( i /2)GR andER , respectively,
for w50.4, 0.2, and 0 are marked by circles, diamonds, and stars.
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The variation of the widths of the resonance states a
function of the coupling strength to the continuum is trac
in Fig. 8. In each group of overlapping states, one collect
state is formed whose structure is determined by the cha
wave function. This can be seen very clearly by compar
the wave functions of the different collective states, wh
are similar to one another but have almost nothing in co
mon with the original wave functions of these states at sm
opening of the aperture~Fig. 9!. Here the variation of the
external mixing occurs mainly in the Im(W): the approach-
ing of the states of a group in their positions as well as
trapping of all but one state inside each group due to enl
ing Im(W) can be seen very clearly in Fig. 8.

It is interesting to compare Fig. 8 with the results for
slightly changed geometry of the cavity. In Ref.@8#, the disk
is smaller and all states between the two thresholds belon
one group. According to this, only one broad state is form
at full opening of the slide.

The avoided crossing of the two broad states in the lo
part of Fig. 8 occurs according to the schematical pict
with iwex @Fig. 1~d!, level attraction and width bifurcation#
with the only difference being that not only the nondiagon
a
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e
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g

-
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e
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FIG. 11. Integrated conductance as a function ofw in the energy

region 25<E<40 ~full line! and 15<E<25 ~dashed line!.
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matrix elements ofH depend on the coupling strength dete
mined by wex, but also the diagonal ones. This case w
studied in detail analytically and numerically in Ref.@11# in
the framework of a schematical model.

In Ref. @9#, avoided level crossings in a closed resona
under the influence of a driving field were studied. The
sults show avoided level crossings with and without a p
manent mixing of the wave functions, in a similar manner
in the open resonator studied by us.

The relation between the peaks in the conductance,
Wigner delay times, and the positions of the states in
closed resonator was studied in Ref.@19#. The results of the
present paper show that the conductance peaks are rela
the positions of the resonance states in theopen resonator.
The peaks are, generally, the result of interferences betw
the resonance states.

Altogether, the interplay between Re(W) and Im(W)
leads, as a rule, to permanent mixings of the wave functio
Level repulsion along the real axis is caused by Re(W),
while a bifurcation of the widths~resonance trapping! is
caused by Im(W). Both processes may interfere with on
another. As a result, different time scales may appear and
energy dependency of the conductance changes with the
gree of opening of the system in a non-trivial manner.

VI. CONCLUSIONS

The interactionW of resonance states via the continuu
of decay channels consists of the Hermitian part Re(W) and
the anti-Hermitian part Im(W). Both terms have to be con
sidered not only in a many-body system@10# but also in the
microwave billiard, as shown in the present paper. So
results show the dominance of Im(W), and others the domi
nance of Re(W). The avoided crossing of the resonan
states in the complex plane may appear, under certain
ditions, as a free crossing along the real axis or along
imaginary axis.

The interplay between the Hermitian and anti-Hermiti
parts of the coupling operator between two resonance s
via a common continuum may lead, in some cases, to a
,
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furcation of the widths~resonance trapping!. In other cases,
it may lead to a repulsion of the states along the real ene
axis. The interactionW introduces, as a rule, permane
changes in the wave functions of the resonance states. U
certain conditions, the system may be stabilized dynamic
@3#.

The resonance picture of a microwave resonator show
the characteristic features which are known from open qu
tum systems with two-body forces between the constitue
This result means that the interaction between the reson
states at the avoided level crossings in the complex pl
plays an important role for a mixing of the wave function
As an example, the wave functions of the collective sho
lived states are strongly mixed in the set of wave functions
the closed system. They are quite different from those of
original states at small coupling to the continuum.

The statistical theory~random matrix theory! describes
resonance states of an almost closed system. The poles o
S matrix are near to the real axis, and Im(W) is small. The
effective Hamilton operator isH5H01Re(W)1Im(W)
5Re(H)2 iVV†, where V’s are the coupling vectors be
tween discrete and scattering states@20#. The level repulsion
along the real energy axis is embodied in Re(H) by choos-
ing, e.g., the Gaussian orthogonal ensemble. Under th
conditions, the effects caused by the interplay betwe
Re(H) and Im(H) can be neglected to a good approxim
tion. The results obtained in the present paper show, h
ever, that the situation is different when the system is rea
open, i.e., when Im(H) and Re(H) are of thesameorder of
magnitude. In this case, the interplay between the two p
of H causesnon-negligibleeffects which are not considere
in the statistical theory. The avoided crossing of resona
states in the complex plane embodies the interplay betw
resonance trapping and level repulsion along the real ax
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